Queries vectors using a query vector to find similar vectors.
The name of the vector bucket.
The name of the index.
The query vector to search with.
Number of results to return.
Optional filter to apply to the query.
Whether to return distance scores. Defaults to `true`.
Whether to return metadata. Defaults to `true`.
response = supabase.storage.vectors().from_("vectors-bucket").index("my-index").query(
query_vector={"float32": [0.1, 0.2, 0.3]},
topK=10
)