AI & Vectors

Generate image captions using Hugging Face

Use the Hugging Face Inference API to make calls to 100,000+ Machine Learning models from Supabase Edge Functions.


We can combine Hugging Face with Supabase Storage and Database Webhooks to automatically caption for any image we upload to a storage bucket.

About Hugging Face

Hugging Face is the collaboration platform for the machine learning community.

Huggingface.js provides a convenient way to make calls to 100,000+ Machine Learning models, making it easy to incorporate AI functionality into your Supabase Edge Functions.

Setup

  • Open your Supabase project dashboard or create a new project.
  • Create a new bucket called images.
  • Generate TypeScript types from remote Database.
  • Create a new Database table called image_caption.
    • Create id column of type uuid which references storage.objects.id.
    • Create a caption column of type text.
  • Regenerate TypeScript types to include new image_caption table.
  • Deploy the function to Supabase: supabase functions deploy huggingface-image-captioning.
  • Create the Database Webhook in the Supabase Dashboard to trigger the huggingface-image-captioning function anytime a record is added to the storage.objects table.

Generate TypeScript types

To generate the types.ts file for the storage and public schemas, run the following command in the terminal:

1
supabase gen types typescript --project-id=your-project-ref --schema=storage,public > supabase/functions/huggingface-image-captioning/types.ts

Code

Find the complete code on GitHub.

1
import { serve } from 'https://deno.land/std@0.168.0/http/server.ts'
2
import { HfInference } from 'https://esm.sh/@huggingface/inference@2.3.2'
3
import { createClient } from 'npm:@supabase/supabase-js@2'
4
import { Database } from './types.ts'
5
6
console.log('Hello from `huggingface-image-captioning` function!')
7
8
const hf = new HfInference(Deno.env.get('HUGGINGFACE_ACCESS_TOKEN'))
9
10
type SoRecord = Database['storage']['Tables']['objects']['Row']
11
interface WebhookPayload {
12
type: 'INSERT' | 'UPDATE' | 'DELETE'
13
table: string
14
record: SoRecord
15
schema: 'public'
16
old_record: null | SoRecord
17
}
18
19
serve(async (req) => {
20
const payload: WebhookPayload = await req.json()
21
const soRecord = payload.record
22
const supabaseAdminClient = createClient<Database>(
23
// Supabase API URL - env var exported by default when deployed.
24
Deno.env.get('SUPABASE_URL') ?? '',
25
// Supabase API SERVICE ROLE KEY - env var exported by default when deployed.
26
Deno.env.get('SUPABASE_SERVICE_ROLE_KEY') ?? ''
27
)
28
29
// Construct image url from storage
30
const { data, error } = await supabaseAdminClient.storage
31
.from(soRecord.bucket_id!)
32
.createSignedUrl(soRecord.path_tokens!.join('/'), 60)
33
if (error) throw error
34
const { signedUrl } = data
35
36
// Run image captioning with Huggingface
37
const imgDesc = await hf.imageToText({
38
data: await (await fetch(signedUrl)).blob(),
39
model: 'nlpconnect/vit-gpt2-image-captioning',
40
})
41
42
// Store image caption in Database table
43
await supabaseAdminClient
44
.from('image_caption')
45
.insert({ id: soRecord.id!, caption: imgDesc.generated_text })
46
.throwOnError()
47
48
return new Response('ok')
49
})